
 

 

Module 1: ML Fundamentals & Data Preparation 
This module lays the essential groundwork for understanding machine learning, covering its 
core concepts, typical workflow, and the critical initial steps of preparing data for model 
training. Without well-prepared data, even the most sophisticated algorithms will yield 
suboptimal results. This module combines theoretical understanding with practical 
application using foundational Python libraries. 

Module Objectives: 
Upon successful completion of this module, students will be able to: 

● Define machine learning and differentiate between its main types. 
● Outline the standard workflow of a machine learning project. 
● Set up a Python environment suitable for machine learning development. 
● Perform basic data loading and exploratory data analysis (EDA). 
● Identify and handle various data types encountered in machine learning. 
● Implement strategies for managing missing data. 
● Apply feature scaling and categorical encoding techniques. 
● Understand the principles of feature engineering. 
● Grasp the fundamental concept of dimensionality reduction, specifically Principal 

Component Analysis (PCA). 
● Execute practical data cleaning, transformation, and basic feature engineering on a 

given dataset. 

 
Week 1: Introduction to Machine Learning & Ecosystem 
This week introduces the fundamental concepts of machine learning, its broad applications, 
and the typical lifecycle of an ML project. It also familiarizes students with the indispensable 
Python libraries that form the backbone of most machine learning development. 

Core Concepts 

1. Definition of Machine Learning (ML) 

Machine learning is a subfield of artificial intelligence that empowers computer systems to 
learn from data without being explicitly programmed. Instead of following fixed instructions, 
ML models identify patterns, make predictions, or discover insights by analyzing large 
datasets. This learning process allows them to improve their performance on a specific task 
over time with more data exposure. 

2. Types of Machine Learning 

Machine learning paradigms are broadly categorized based on the nature of the learning 
signal or feedback available: 



● Supervised Learning: This is the most common type, where the model learns from 
a labeled dataset. Each data point in the training set has both input features and a 
corresponding target output (label). The goal is for the model to learn a mapping 
function from inputs to outputs so it can predict outputs for new, unseen inputs. 

○ Examples: Predicting house prices (regression, where the output is a 
continuous value), classifying emails as spam or not spam (classification, 
where the output is a discrete category). 

● Unsupervised Learning: In this paradigm, the model is given unlabeled data and 
must discover hidden patterns or structures within it on its own. There are no 
predefined target outputs. 

○ Examples: Grouping similar customer segments (clustering), reducing the 
number of variables in a dataset while retaining most information 
(dimensionality reduction). 

● Semi-supervised Learning (Conceptual): This approach combines aspects of both 
supervised and unsupervised learning. The model is trained on a dataset that 
contains a small amount of labeled data and a large amount of unlabeled data. It 
attempts to leverage the unlabeled data to improve the learning process, which can 
be particularly useful when labeling data is expensive or time-consuming. 

● Reinforcement Learning (Conceptual): This involves an agent learning to make 
decisions by interacting with an environment. The agent performs actions and 
receives rewards or penalties based on those actions, aiming to maximize its 
cumulative reward over time. This is often used in robotics, game playing, and 
autonomous systems. 

3. Key Applications and Impact of ML 

Machine learning has transformed numerous industries and aspects of daily life. Its impact is 
vast, ranging from: 

● Healthcare: Disease diagnosis, drug discovery, personalized medicine. 
● Finance: Fraud detection, algorithmic trading, credit scoring. 
● Marketing & E-commerce: Recommendation systems, targeted advertising, 

customer churn prediction. 
● Natural Language Processing (NLP): Speech recognition, machine translation, 

sentiment analysis. 
● Computer Vision: Facial recognition, object detection, autonomous driving. 
● Manufacturing: Predictive maintenance, quality control. 

The pervasive nature of ML highlights its importance and the increasing demand for 
skilled practitioners. 

4. The Machine Learning Workflow: A Lifecycle 

A typical machine learning project follows a structured workflow to ensure effective model 
development and deployment: 

● Problem Definition: Clearly defining the business problem, the type of ML task 
required (e.g., classification, regression), and the desired outcome. This is the most 
crucial step. 



● Data Acquisition: Collecting relevant data from various sources (databases, APIs, 
web scraping, etc.). 

● Data Preprocessing: Cleaning, transforming, and preparing the raw data into a 
suitable format for machine learning algorithms. This often includes handling missing 
values, encoding categorical data, and scaling numerical features. 

● Exploratory Data Analysis (EDA): Analyzing data to discover patterns, detect 
anomalies, test hypotheses, and check assumptions using statistical graphics and 
other data visualization methods. 

● Feature Engineering: Creating new, more informative features from existing ones to 
improve model performance. 

● Model Selection: Choosing an appropriate machine learning algorithm based on the 
problem type, data characteristics, and desired performance. 

● Model Training: Feeding the preprocessed data to the chosen algorithm to learn 
patterns and relationships. This involves optimizing model parameters. 

● Model Evaluation: Assessing the trained model's performance using appropriate 
metrics on unseen data to determine its effectiveness and generalization capabilities. 

● Hyperparameter Tuning: Adjusting the external configuration parameters of the 
model (hyperparameters) to optimize its performance. 

● Deployment: Integrating the trained and optimized model into a production 
environment where it can make predictions on new, real-time data. 

● Monitoring & Maintenance: Continuously monitoring the deployed model's 
performance, retraining as necessary, and updating it to adapt to changing data 
distributions or business requirements. 

5. Python ML Ecosystem: Essential Libraries 

Python has become the de facto language for machine learning due to its simplicity, vast 
ecosystem, and powerful libraries. 

● Jupyter Notebooks / Google Colab: Interactive computing environments that 
combine code, output, and explanatory text. They are ideal for rapid prototyping, data 
exploration, and sharing ML experiments. Google Colab is a cloud-based variant 
offering free access to GPUs. 

● NumPy: The fundamental package for numerical computing in Python. It provides 
powerful N-dimensional array objects and functions for performing complex 
mathematical operations on these arrays efficiently. It is the backbone for almost all 
other numerical and ML libraries. 

● Pandas: A powerful and flexible library for data manipulation and analysis. It 
introduces two primary data structures: Series (1D labeled array) and DataFrame (2D 
labeled table with columns of potentially different types). Pandas is essential for 
loading, cleaning, transforming, and preparing tabular data. 

● Matplotlib / Seaborn: 
○ Matplotlib: A comprehensive library for creating static, animated, and 

interactive visualizations in Python. It provides a wide range of plotting 
functions. 

○ Seaborn: Built on top of Matplotlib, Seaborn provides a high-level interface 
for drawing attractive and informative statistical graphics. It simplifies the 
creation of complex visualizations commonly used in EDA. 



Lab: Environment Setup & Basic EDA 

This hands-on session focuses on getting the development environment ready and 
performing initial data exploration. 

Lab Objectives: 

● Successfully set up a Jupyter Notebook or Google Colab environment. 
● Load a dataset into a Pandas DataFrame. 
● Perform basic data inspection and summary statistics. 
● Create simple visualizations to understand data distribution and relationships. 

Activities: 

1. Environment Setup: 
○ If using Jupyter Notebooks locally: Install Anaconda (which includes Python, 

Jupyter, NumPy, Pandas, Matplotlib, Seaborn). Launch Jupyter Notebook. 
○ If using Google Colab: Access it through a Google account. Create a new 

notebook. 
2. Loading Data: 

○ Choose a simple tabular dataset (e.g., Iris dataset, California Housing 
dataset, or a small CSV file like "student_grades.csv" with columns like 
'Hours_Studied', 'Exam_Score', 'Attendance'). 

○ Use Pandas' read_csv() function to load the data into a DataFrame. 
○ Display the first few rows (.head()) and the last few rows (.tail()) to get a quick 

glimpse of the data. 
3. Basic Data Inspection: 

○ Check the dimensions of the DataFrame (.shape). 
○ Get a concise summary of the DataFrame, including data types and non-null 

values (.info()). 
○ Obtain descriptive statistics for numerical columns (.describe()). 
○ Check for the number of unique values in categorical columns (.nunique()). 

4. Exploratory Data Analysis (EDA) - Basic Visualizations: 
○ Histograms: Plot histograms for numerical features to visualize their 

distribution (e.g., using matplotlib.pyplot.hist() or seaborn.histplot()). 
○ Box Plots: Create box plots for numerical features to identify outliers and 

understand spread (e.g., using seaborn.boxplot()). 
○ Scatter Plots: Generate scatter plots to observe relationships between two 

numerical features (e.g., using seaborn.scatterplot()). For example, 
'Hours_Studied' vs. 'Exam_Score'. 

○ Count Plots/Bar Plots: Visualize the distribution of categorical features (e.g., 
using seaborn.countplot()). 

○ Self-reflection: What insights can you gain from these initial plots? Are there 
any obvious patterns or issues (e.g., skewed distributions, potential outliers)? 

 
Week 2: Data Preprocessing & Feature Engineering 



This week delves into the crucial steps of preparing raw data for machine learning 
algorithms. Effective data preprocessing can significantly impact model performance and 
robustness. 

Core Concepts 

1. Data Types and Their Implications 

Understanding data types is fundamental as different types require different preprocessing 
techniques. 

● Numerical Data: 
○ Continuous: Can take any value within a given range (e.g., temperature, 

height, income). 
○ Discrete: Can only take specific, distinct values (e.g., number of children, 

counts). 
● Categorical Data: Represents categories or groups. 

○ Nominal: Categories without any inherent order (e.g., colors, marital status, 
gender). 

○ Ordinal: Categories with a meaningful order (e.g., educational level: 'High 
School', 'Bachelor's', 'Master's', 'PhD'). 

● Temporal Data (Time Series): Data points indexed in time order (e.g., stock prices, 
sensor readings). Often requires specialized handling like extracting features from 
timestamps. 

● Text Data: Unstructured human language (e.g., reviews, articles). Requires 
techniques like tokenization, stemming, lemmatization, and vectorization (e.g., 
TF-IDF, Word Embeddings – conceptual for now). 

2. Handling Missing Values 

Missing data is a common issue and can lead to biased models or errors. Strategies include: 

● Identification: Detecting missing values (e.g., using DataFrame.isnull().sum()). 
● Deletion: 

○ Row-wise Deletion (Listwise Deletion): Remove entire rows that contain any 
missing values. Simple but can lead to significant data loss, especially with 
many missing entries. 

○ Column-wise Deletion: Remove entire columns if they have a high percentage 
of missing values or are deemed irrelevant. 

● Imputation: Filling in missing values. 
○ Mean/Median/Mode Imputation: Replacing missing numerical values with the 

mean or median of the column, and categorical values with the mode. Simple 
but can reduce variance and distort relationships. 

○ K-Nearest Neighbors (K-NN) Imputation: Filling missing values using the 
average of values from k nearest neighbors. More sophisticated but 
computationally intensive. 

○ Model-Based Imputation: Using another machine learning model to predict 
missing values. 



3. Feature Scaling 

Many machine learning algorithms (especially those based on distance calculations like 
K-NN, SVMs, or gradient descent-based algorithms like Linear Regression, Logistic 
Regression, Neural Networks) are sensitive to the scale of features. Features with larger 
ranges can dominate the distance calculations or gradient updates. Scaling ensures all 
features contribute equally. 

● Standardization (Z-score Normalization): Transforms data to have a mean of 0 
and a standard deviation of 1. 

○ Formula: x′=(x−mean)/standard deviation 
○ Useful when the data distribution is Gaussian-like, and robust to outliers. 

● Normalization (Min-Max Scaling): Scales features to a fixed range, typically [0, 1]. 
○ Formula: x′=(x−xmin )/(xmax −xmin ) 
○ Useful when features have arbitrary units, and sensitive to outliers. 

4. Encoding Categorical Features 

Machine learning algorithms primarily work with numerical data. Categorical features must 
be converted into a numerical representation. 

● One-Hot Encoding: Creates new binary columns for each unique category. If a data 
point belongs to a category, the corresponding column gets a 1, and others get 0. 

○ Use Case: For nominal categorical features where no order is implied (e.g., 
'Red', 'Green', 'Blue'). Avoids implying an artificial ordinal relationship. 

○ Drawback: Can lead to a high-dimensional feature space if there are many 
unique categories. 

● Label Encoding (Ordinal Encoding): Assigns a unique integer to each category. 
○ Use Case: For ordinal categorical features where there is a clear order (e.g., 

'Low'=0, 'Medium'=1, 'High'=2). 
○ Drawback: If used for nominal features, it can impose an arbitrary and 

incorrect ordinal relationship that algorithms might misinterpret. 

5. Feature Engineering Principles 

Feature engineering is the process of creating new features or transforming existing ones 
from the raw data to help a machine learning model learn better. It requires domain 
knowledge and creativity. 

● Creating New Features: 
○ Combinations: Combining existing features (e.g., 'Length' * 'Width' for 'Area'). 
○ Aggregations: Grouping data and computing statistics (e.g., average 

purchase amount per customer). 
○ Transformations: Applying mathematical functions (logarithm, square root) to 

normalize skewed distributions. 
○ Time-based Features: Extracting 'day of week', 'month', 'year', 'is_weekend' 

from timestamps. 



● Polynomial Features: Creating higher-order terms for existing features (e.g., x2,x3) 
to capture non-linear relationships. 

● Interaction Terms: Multiplying two or more features to capture their combined effect 
(e.g., 'Age' * 'Income'). 

6. Dimensionality Reduction: Principal Component Analysis (PCA) Introduction 

As the number of features (dimensions) increases, the data becomes sparser, and models 
can become prone to overfitting (Curse of Dimensionality). Dimensionality reduction 
techniques aim to reduce the number of features while preserving as much variance 
(information) as possible. 

● Principal Component Analysis (PCA): A linear dimensionality reduction technique. 
It transforms the data into a new set of orthogonal (uncorrelated) variables called 
Principal Components (PCs). Each PC captures the maximum possible variance 
from the original data, and they are ordered such that the first PC captures the most 
variance, the second the second most, and so on. 

● Purpose: Noise reduction, visualization of high-dimensional data, reducing 
computational cost, improving model performance by mitigating the curse of 
dimensionality. 

Lab: Comprehensive Data Cleaning, Transformation, and Basic Feature Engineering 

This hands-on session will apply the various preprocessing techniques discussed, 
reinforcing their practical application. 

Lab Objectives: 

● Identify and handle missing values in a dataset. 
● Apply appropriate feature scaling to numerical features. 
● Convert categorical features into numerical representations using encoding 

techniques. 
● Implement basic feature engineering steps. 
● Apply PCA for simple dimensionality reduction and observe its effect. 

Activities: 

1. Data Loading and Initial Assessment (Revisit from Week 1): 
○ Load a slightly more complex dataset with missing values and mixed data 

types (e.g., Titanic dataset, a simplified version of the Boston Housing dataset 
with missing values). 

○ Perform an initial .info() and .describe() to understand its structure and 
identify potential issues. 

○ Use .isnull().sum() to pinpoint columns with missing data. 
2. Handling Missing Values: 

○ For a numerical column with missing values (e.g., 'Age' in Titanic), impute 
with the median. Compare the distribution before and after imputation using 
histograms. 



○ For a categorical column with missing values (e.g., 'Embarked' in Titanic), 
impute with the mode. 

○ For columns with too many missing values (e.g., >70%), consider dropping 
them. 

3. Feature Scaling: 
○ Select a few numerical features (e.g., 'Fare', 'Age' if imputed) that have 

different scales. 
○ Apply StandardScaler from Scikit-learn to one set of features. 
○ Apply MinMaxScaler to another set of features. 
○ Visually inspect the scaled distributions (e.g., using histograms or scatter 

plots) and compare them to the original. 
4. Encoding Categorical Features: 

○ Identify nominal categorical features (e.g., 'Sex', 'Embarked' in Titanic). Apply 
OneHotEncoder from Scikit-learn or pd.get_dummies(). Observe the creation 
of new columns. 

○ Identify any ordinal categorical features (if applicable, or create a mock one 
like 'Education_Level': 'High', 'Medium', 'Low'). Apply LabelEncoder or map 
integers manually. 

5. Basic Feature Engineering: 
○ Creating new features: From 'Age' and 'Fare', create a new feature 

'Family_Size' (if 'SibSp' and 'Parch' are present in Titanic). 
○ Polynomial Features: Select one numerical feature (e.g., 'Fare') and create 

a polynomial feature (e.g., 'Fare_squared') using 
sklearn.preprocessing.PolynomialFeatures. 

6. Introduction to Dimensionality Reduction (PCA): 
○ Select a subset of numerical features (e.g., 4-5 features). 
○ Apply StandardScaler to these features. 
○ Apply PCA from Scikit-learn, reducing the dimensions to 2. 
○ Plot the data in the new 2-dimensional PCA space to visualize the 

transformed data. Note that the axes are now "principal components" rather 
than original features. 

7. Final Data Review: 
○ After all preprocessing steps, check the DataFrame's .info() again to confirm 

data types and non-null counts. 
○ Save the preprocessed DataFrame to a new CSV file. 

Self-Reflection Questions for Students: 

● Why is feature scaling important for certain algorithms? 
● When would you choose One-Hot Encoding over Label Encoding, and vice-versa? 
● What are the potential downsides of aggressively deleting rows with missing values? 
● Can you think of a new feature you could engineer from the dataset that might be 

useful for prediction? 
● How does PCA simplify the data, and what information might be lost in the process? 

 
 


	Module 1: ML Fundamentals & Data Preparation 
	Module Objectives: 
	Week 1: Introduction to Machine Learning & Ecosystem 
	Core Concepts 
	Lab: Environment Setup & Basic EDA 

	Week 2: Data Preprocessing & Feature Engineering 
	Core Concepts 
	Lab: Comprehensive Data Cleaning, Transformation, and Basic Feature Engineering 



